SIR model

Estimation and prediction

Asset pricing with epidemic 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact

Alexis Akira Toda

University of California San Diego

March 31, 2020 Up-to-date analysis: https://sites.google.com/site/aatoda111/misc/covid19

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Coronavirus Disease 2019

- Respiratory syndrome caused by new stain of coronavirus was reported in Wuhan, China in December 2019
- Named Coronavirus Disease 2019 (COVID-19)
 - Symptoms include fever, dry cough, tiredness, and joint pain, which resemble seasonal influenza
 - Vast majority of cases (> 99%?) are mild and recover with no special treatment

 Diamond Princess
 - Severe cases (< 1%?) lead to acute respiratory distress syndrome (ARDS) and require intensive care (intubation, ventilation, fluid management, etc.)

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

Coronavirus Disease 2019

- Respiratory syndrome caused by new stain of coronavirus was reported in Wuhan, China in December 2019
- Named Coronavirus Disease 2019 (COVID-19)
 - Symptoms include fever, dry cough, tiredness, and joint pain, which resemble seasonal influenza
 - Vast majority of cases (> 99%?) are mild and recover with no special treatment

 Diamond Princess
 - Severe cases (< 1%?) lead to acute respiratory distress syndrome (ARDS) and require intensive care (intubation, ventilation, fluid management, etc.)
- Early containment appears to be successful (so far) in China but have failed in other countries
- As of March 31, 2020, there are 780,000 cases reported and 37,000 deaths globally; different from 2003 SARS SARS

Asset pricing with epidemic 000000

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

What should we do?

- Individuals need rational expectations about the course of epidemic to make everyday decisions
 - Should I social-distance, and for how long?
 - Should I buy toilet paper and pasta?
 - Should I buy or sell stocks?
- · Policy makers need information to design policy
 - Should we close schools, bars, restaurants, and other businesses?
 - Should we restrict travel?
 - When and how long?

Introduction

• All of above require up-to-date data and out-of-sample predictions

Estimation and prediction

Asset pricing with epidemic 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

This paper

- 1. Using daily cross-country data on COVID-19 cases, estimates parameters of mathematical epidemic model
- 2. Makes out-of-sample predictions: in US,
 - Peak comes in 31 days
 - At peak, 38% of population infected simultaneously

SIR mode

Introduction

Estimation and prediction

Asset pricing with epidemic 000000

This paper

- 1. Using daily cross-country data on COVID-19 cases, estimates parameters of mathematical epidemic model
- 2. Makes out-of-sample predictions: in US,
 - Peak comes in 31 days
 - At peak, 38% of population infected simultaneously
- 3. Discusses optimal mitigation policy: based on model,
 - Current drastic social distancing measures suboptimal: can delay peak but no effect on *size* of peak (unless permanent)
 - Optimal policy is to social-distance only when sufficiently many people (\sim 1%) are infected; under optimal policy, peak reduces to 5.6%
 - Intuition: need to acquire herd immunity to end epidemic; premature drastic measures prevent this
- 4. Application to economic impact (stock market)

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Susceptible-Infected-Recovered (SIR) model

- SIR model (Kermack & McKendrick, 1927) is simplest epidemic model
- Society consists of N individuals, among whom
 - S are susceptible (not immune)
 - I are *infected* (can infect non-immune individuals)
 - R are recovered (immune or dead)
- Model can be extended to allow for features such as
 - Exposed individuals (those already infected, but not able to infect others yet)
 - Multiple regions with inflow/outflow

SIR model

Estimation and prediction

Asset pricing with epidemic

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Susceptible-Infected-Recovered (SIR) model

- By accounting, N = S + I + R. Define
 - x = S/N: fraction of susceptible
 - y = I/N: fraction of infected
 - z = R/N: fraction of recovered
- Key differential equations:

$$\begin{split} \dot{x} &= -\beta xy, \\ \dot{y} &= \beta xy - \gamma y, \\ \dot{z} &= \gamma y. \end{split}$$

- Interpretations:
 - Infected (y) meet susceptible (x) and transmit disease at certain transmission rate β
 - Infected (y) recover (or die) at certain recovery rate γ

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Some qualitative observations of SIR model

• Suppose $x_0, y_0 > 0$. Then

$$\dot{y} = (\beta x - \gamma)y \begin{cases} \leq 0 & \text{if } \beta x \leq \gamma, \\ > 0 & \text{if } \beta x > \gamma. \end{cases}$$

- Hence infection rate y single-peaked and
 - no epidemic if $\beta x_0 \leq \gamma$
 - epidemic if $\beta x_0 > \gamma$
- Definition: society has herd immunity if no-epidemic condition βx ≤ γ holds
- Reproduction number $R = \beta / \gamma$ key parameter

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

Analytical solution to SIR model

- Despite nonlinearities (x-y interaction), SIR model has parametric closed-form solution
- Convenient for estimation & prediction

Proposition (Harko et al.(2014))

Let $x(0) = x_0 > 0$, $y(0) = y_0 > 0$, $z(0) = z_0 \ge 0$ be given, where $x_0 + y_0 + z_0 = 1$. Then SIR model has parametric solution

$$egin{aligned} & x(t) = x_0 v, \ & y(t) = rac{\gamma}{eta} \log v - x_0 v + x_0 + y_0, \ & z(t) = -rac{\gamma}{eta} \log v + z_0, \end{aligned}$$

where

$$t = \int_{v}^{1} \frac{\mathrm{d}\xi}{\xi(\beta x_{0}(1-\xi) + \beta y_{0} + \gamma \log \xi)}.$$

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Theoretical properties

Proposition

The followings hold in SIR model:

1. In the long run, fraction $v^* \in (0,1)$ of susceptible individuals infected (fraction $1 - v^*$ infected), where v^* is unique solution to

$$x_0(1-v)+y_0+\frac{\gamma}{\beta}\log v=0.$$

2. If $\beta x_0 > \gamma$, peak of epidemic happens when $\beta x(t_{max}) = \gamma$, at which point fraction

$$y_{\max} = y(t_{\max}) = \frac{\gamma}{\beta} \log \frac{\gamma}{\beta x_0} - \frac{\gamma}{\beta} + x_0 + y_0$$

of population is infected. The maximum infection rate y_{max} is increasing in x_0 , y_0 , and reproduction number $R = \beta/\gamma$.

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Policy implications

- Based on evidence from Spanish flu in 1918, mortality is higher during peak because healthcare system overwhelmed
- Hence important to reduce peak y_{max}
- Because recovery rate γ is biological parameter that is out of control, can reduce peak by
 - Reduce susceptible x_0 (e.g., vaccination)
 - Reduce transmission rate β (e.g., social distancing, isolation)

SIR mod 000000 Asset pricing with epidemic 000000

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Data

- Daily cases of COVID-19 provided by Center for Systems Science and Engineering (CSSE) at Johns Hopkins University
- Cumulative number of confirmed cases and deaths can be downloaded from GitHub repository
- Time series starts on January 22, 2020 and updated daily
- Countries added as new cases reported
- For some countries (e.g., Australia, Canada, China), regional data available

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

(日)

Estimation and prediction

• Basic idea: minimize loss function

$$L(\beta,\gamma,y_0,z_0)=\sum_t \left(\log \widehat{c}(t)-\log c(t)\right)^2,$$

where c, \hat{c} : fraction of cases in model and data

- Challenges:
 - COVID-19 situation (policies) rapidly evolving
 - Cases significantly underreported (: mild cases more likely undetected/untested)
 - recovery rate γ unidentified from cases
 - initial fraction of recovered (immune) z₀ unknown

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

Assumptions

- Use most recent 14 days of data (to deal with parameter changes)
- Testing/reporting rate constant during estimation period
- Set recovery rate $\gamma = 0.1$ assuming 10 days to recover as in influenza (14 days is more conservative)
- Estimate *z*₀ (initial fraction recovered) from death cases and reported mortality rate:

$$z_0 = \frac{\text{Number of deaths at } t = 0}{\text{Mortality}}$$

(Still, actual z₀ likely much higher due to underreporting)

- For robustness, use median value of mortality among
 - 1. That country
 - 2. South Korea (most reliable data due to high testing rate)
 - 3. Global mortality

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

Estimation

• Basic idea: minimize loss function

$$L(\beta,\gamma,y_0,z_0)=\sum_t \left(\log \widehat{c}(t)-\log c(t)\right)^2,$$

where c, \hat{c} : fraction of cases in model and data

- As discussed, γ , z_0 are exogenously set
- Underreporting in cases absorbed by y_0 , hence estimation of β likely consistent
- Interpretation of β : transmission rate during past 14 days (not natural rate)
- Compute standard errors using asymptotic theory of nonlinear least squares (*M*-estimator) and assuming independent measurement errors

SIR mod

Estimation and prediction

Asset pricing with epidemic 000000

Results

- Estimate SIR model for all countries with at least 1,000 cases now and 10 cases 14 days ago
- Median transmission rate: $\beta = 0.26$ (s.e. ~ 0.01)
- Reproduction number $R = \beta/\gamma \sim 3$, so epidemic inevitable

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

SIR mode

Estimation and prediction

Asset pricing with epidemic 000000

(日)

Mitigation policies

- Suppose government takes mitigation measures (e.g., social-distancing, restricting travel, closing schools, etc.)
- Reduce transmission rate β to 0.2 or 0.1
- Start mitigation measures when fraction of cases c reaches $10^{-5}\,$
- Assume mitigation measures lifted after 12 weeks

SIR model

Estimation and prediction

Asset pricing with epidemic 000000

Suboptimality of early mitigation

- Early mitigation delays peak but size unaffected
- Intuition: prevents building herd immunity

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

SIR model

Estimation and prediction

Asset pricing with epidemic

Optimal mitigation

- Assume government can control timing and intensity of mitigation measures and minimize peak infection rate y_{max}
- By optimally delaying intervention, can reduce peak
- Intuition: build herd immunity (low x)

SIR model

Estimation and prediction

Asset pricing with epidemic • 00000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Asset pricing with epidemic

- Consider stylized production-based asset pricing model
- Evaluate effect of epidemic on stock price under
 - 1. laissez-faire (no intervention)
 - 2. optimal mitigation

SIR model

Estimation and prediction

Asset pricing with epidemic

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Model

- Capitalists and workers
 - Capitalists: hold capital, trade financial assets, CRRA preferences
 - Workers: supply labor and hand-to-mouth
- Capital exogenous and i.i.d. growth: log $K_{t+1}/K_t \sim N(\mu, \sigma^2)$
 - Can interpret as Solow growth model with TFP growth
- Production Cobb-Douglas: $Y = K^{\alpha} L^{1-\alpha}$
- Infected workers can't supply labor
- Stock is claim to profit $K^{\alpha}L^{1-\alpha} wL$

Intro	du	cti	on
000			

SIR model

Estimation and prediction

Asset pricing with epidemic

Solution

• By market clearing and profit maximization,

$$C = D = K^{\alpha} L^{1-\alpha} - wL = \alpha K^{\alpha} L^{1-\alpha}$$

• No-arbitrage condition:

$$P_t = \mathsf{E}_t \left[\beta (C_{t+1}/C_t)^{-\gamma} (P_{t+1} + C_{t+1}) \right]$$

• Hence price-dividend ratio satisfies

$$V_t = \mathsf{E}_t \left[\beta \left((K_{t+1}/K_t)^{\alpha} (L_{t+1}/L_t)^{1-\alpha} \right)^{1-\gamma} (V_{t+1}+1) \right]$$

• Using lognormal capital growth, get

$$V_t = \kappa (L_{t+1}/L_t)^{(1-\alpha)(1-\gamma)} (V_{t+1}+1),$$

where $\kappa = \beta e^{\alpha(1-\gamma)\mu + [\alpha(1-\gamma)]^2 \sigma^2/2}$

Straightforward to numerically solve by iteration

SIR model

Estimation and prediction

Asset pricing with epidemic

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Calibration

- $\alpha = 0.38$, $\gamma = 3$, $\beta = 4\%$ discount (standard)
- · Capital growth and volatility calibrated from GDP growth
 - In steady state model, $Y = K^{\alpha}$, so $\Delta \log Y = \alpha \Delta \log K$
- Transmission rate 0.3 (median value)
- Recovery rate 0.1 (10 days)
- Initial condition $(y_0, z_0) = (10^{-8}, 0)$ (not important)

SIR model

Estimation and prediction

Asset pricing with epidemic

Stock price during epidemic

- Without mitigation, stock price crashes by 50%
- Crash short-lived (temporary supply shock)

SIR model

Estimation and prediction

Asset pricing with epidemic $00000 \bullet$

Stock price with optimal mitigation

- With optimal mitigation, stock price decreases by 10%
- Bear market lasts for half a year, with two troughs

SIR model 000000 Estimation and prediction

Asset pricing with epidemic

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Conclusion

- COVID-19 situation rapidly evolving, so any analysis based on current data will quickly become out of date, but
 - 1. Now that community transmission is widespread and $\beta \approx 0.3 \gg 0.1 \approx \gamma$, epidemic likely inevitable
 - 2. (Too) early mitigation buys time (to develop vaccine, build respirators, masks, & gloves, and train people), but no effect on peak (unless prolonged mitigation)
 - 3. Optimally delayed mitigation may reduce peak

SIR mod

Estimation and prediction

Asset pricing with epidemic

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Conclusion

- COVID-19 situation rapidly evolving, so any analysis based on current data will quickly become out of date, but
 - 1. Now that community transmission is widespread and $\beta \approx 0.3 \gg 0.1 \approx \gamma$, epidemic likely inevitable
 - 2. (Too) early mitigation buys time (to develop vaccine, build respirators, masks, & gloves, and train people), but no effect on peak (unless prolonged mitigation)
 - 3. Optimally delayed mitigation may reduce peak
- My view is that current lock-down measures in California are too early & extreme; unsustainable drastic measures suboptimal
- Maybe targeted isolation of elderly & those with underlying conditions is better

Diamond Princess

- In February 2020, cruise ship Diamond Princess put under quarantine after COVID-19 detected
- All passengers tested and tracked
- 712 tested positive and 8 died; hence mortality = $8/712 \approx 1\%$
- Cruise ship passengers older than general population, so likely overestimate Return

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- In 2002–2004, there was outbreak of severe acute respiratory syndrome (SARS) caused by another coronavirus
- 8,096 cases and 775 deaths globally (9.6%), quickly contained by isolation of patients and contact tracking
- COVID-19 seems much more contagious but much less lethal than SARS keturn

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・